
henry\&hymas

WATER SENSITIVE URBAN DESIGN (WSUD) AND STORMWATER REPORT PROPOSED HEALTH CARE FACILITY

Planning Proposal Submission

November 2021

HENRY \& HYMAS CONSULTING ENGINEERS PTY LTD SUITE 2.01, 828 PACIFIC HIGHWAY
GORDON NSW 2067
Tel: (02) 94178400 Fax: (02) 94178337
Our Job No. 20442
E-mail: email@hhconsult.com.au

TABLE OF CONTENTS

Contents

1. INTRODUCTION 3
1.1 General 3
1.2 Background 3
1.3 PROPOSED DEVELOPMENT 4
1.4 Council Policies 4
2. UPSTREAM CATCHMENT 5
2.1 Catchment plan 5
2.2 Calculated 100 yr flows 6
3. PROPOSED PIPE AND CHANNEL 6
4. HEC-RAS MODELLING 7
4.1 Post-developed Model 7
4.2 HECRAS Model Parameters 8
4.3 Results 8
5. STORMWATER MANAGEMENT 9
5.1 Stormwater quantity 9
5.2 Water Quality 10
6. CONCLUSION 11
APPENDIX A - CIVIL ENGINEERING PLANS 12

1. INTRODUCTION

1.1 General

This report has been prepared to support the Planning Proposal for the proposed Health Care Development at 61-71 Goulburn Street, Liverpool, NSW. This report has been prepared in accordance with Liverpool Council DCP and flood requirements. DRAINS modelling has been undertaken to demonstrate that the proposed Heath Care Development's stormwater system is in accordance with Council's OSD requirements, as well as to ensure adequate capacity for the pipes within the stormwater easement. Additionally, HEC-RAS modelling was utilized to determine the post developed 100 yr ARI flood levels and extent in order to demonstrate that the development is in accordance with Council's flooding and freeboard requirements.

MUSIC modelling has been undertaken to ensure compliance with Council's water quality requirements. The intended water quality treatment will ensure there any impacts on downstream ecosystems are minimised as much as possible.

1.2 Background

The development site is located on 61-71 Goulburn Street, Liverpool, and is approximately 4670 sqm, refer Figure 1. The development site is bordered by residential houses on the Northern, Western and Southern sides and has a general fall from the North Western boundary to the South Eastern boundary with levels that range from RL11.91 in the North Western corner of the site to RL11.31 in the South Eastern corner of the site.

Currently the site consists of 5 residential buildings with vehicular access from Goulburn Street and Goulburn Service Way. Furthermore a main stormwater line runs through the site in lot 20 DP113807 within an easement of 108.2 sqm as indicated in Figure 1. The site also includes an upstream catchment which discharges overland through the site as seen in Figure 2.1.

Figure 1 - Site location (Source: Nearmaps), Red indicating boundary lines, Blue indicating easement lines

1.3 PROPOSED DEVELOPMENT

The proposed building structure will encompass a large portion of the site. It consists of a health care facility that will have 11 levels including 3 basement levels for parking, a ground floor and 7 upper levels. Additionally a drop off bay is included that is accessible from Goulburn Street.

1.4 Council Policies

The civil engineering component of the aforementioned project has been designed in accordance with the following council codes and policies.

Liverpool City Council - Development Control Plan 2008
Liverpool City Council - Handbook for drainage design
Liverpool City Council - On-Site Stormwater Detention Technical Specification

2. UPSTREAM CATCHMENT

2.1 Catchment plan

As discussed previously, in addition to the 450 mm diameter stormwater pipe, there is an upstream catchment which discharges overland through the proposed site, the total area being 6423 sqm as shown in figure 2.1.

Figure 2.1 Catchment Plan

2.2 Calculated 100 yr flows

Refer to the DRAINS model titled "26442 Liverpool Hospital Planning Proposal- Above Ground OSD" which has been included as part of this submission. The 100 yr flow was calculated based off the following parameters:

- 0.6423 ha catchment
- 70% impervious
- 30% pervious
- Local rainfall data

Based on the results of the DRAINS model, the 100yr ARI flow rate of the upstream catchment was calculated to be $0.307 \mathrm{~m} 3 / \mathrm{s}$

3. PROPOSED PIPE AND CHANNEL

There is an existing stormwater easement through the centre of the existing site, conveying both piped and overland upstream flows through the site. The proposed building encroaches on this existing easement, therefore it is proposed to relocate the stormwater easement to the northern boundary and to ensure all structures (including the basement levels) are kept clear of the easement. Refer to Figure 3.1. As such, overland flow from the catchment shown in figure 2.1 is redirected around the proposed building footprint. The proposed easement will have an increased 525 mm diameter stormwater pipe to ensure no loss of pipe capacity and a 3 m wide vegetated swale over in order to ensure the overland flows can be directed through the site without impacting on the proposed or neighbouring buildings.

Figure 3.1 Proposed Stormwater System and adjustment of easement

To provide effective freeboard to the finished floor level of the health care facility (set at FFL 11.90), retaining walls are proposed within the stormwater easement, with a top of wall level set a minimum 300 mm above the top water surface level, as calculated in HECRAS. This ensure that the design is compliant with Council's freeboard requirements (300 mm freeboard to habitable floor levels for overland flow). As shown in figure 3.2 overland flow from in a 100-year storm is contained within the stormwater easement and as a result the risk of flood damage to the proposed health care facility is minimised.

Figure 3.2- Stormwater overflow contained in 100 yr storm

4. HEC-RAS MODELLING

4.1 Post-developed Model

A post-developed HEC-RAS model has been generated in order to ascertain the post-developed flood levels and to ensure that the development can accommodate the flows through the site without increasing the flood level within neighbouring properties. Given that the flooding is proposed to be completely contained within the proposed swale/easement, no pre-development HECRAS model has been prepared.

A manning's n value of 0.03 has been adopted for the HEC-RAS sections within the site that form part of the swale.

The boundary conditions have been input as a normal depth of $S=0.01$ for both upstream and downstream conditions.

Flow rates have been input as calculated in Section 2.2 of this report:

- $0.307 \mathrm{~m}^{3} / \mathrm{s}$ at chainage 78.61

Refer to the HEC-RAS model and drawings within Appendix A for further details.

4.2 HECRAS Model Parameters

Manning's n value $=0.013$ (impervious surfaces)
Manning's n value $=0.03$ (pervious/grassed surfaces)
Boundary Conditions $>$ Normal depth of $\mathrm{S}=0.01$
Flow Rates

- $0.307 \mathrm{~m}^{3} / \mathrm{s}$ at chainage 78.61

4.3 Results

Refer to drawing C121 within Appendix A showing the flood extent in the post-developed condition.

Refer to the tables below for a full summary of the 100-year post flood levels at each chainage.

Chainage (m)	POST-developed 100yr WSL
78.61	11.75
70	11.71
60	11.67
50	11.63
40	11.59
30	11.56
20	11.52
10	11.49
00	11.43

Table 4.3 HEC-RAS 100yr pre-developed flood levels
The results summarised in Table 4.3 have been used to ensure that the required freeboard of 300 mm can be provided to protect the proposed building. The top of wall levels for the retaining structure within the easement has been set at a minimum of 300 mm above the calculated 100 yr water surface level, providing an effective freeboard to the building. The HEC-RAS modelling also shows that the overland flows from the upstream catchment can be completely contained within the stormwater easement. Refer to the drawings within Appendix A and the attached HECRAS model for further details.

5. STORMWATER MANAGEMENT

Stormwater controls are proposed to be introduced to control the altered water quality and flow of stormwater as a result of the implementation of the proposed Liverpool healthcare facility.

Key Issues

The key issues and the proposed mitigation measures to be implemented as part of the proposed development are:

- Stormwater Quantity- The implementation of the proposed Healthcare facility will result in an increased impervious surface area including surfaces such as the drop off bay and roof. As a result an increase in peak stormwater flows will be noticeable during storm events as lesser amounts of stormwater are being absorbed into the ground. Therefore it is appropriate that an OSD system is introduced to manage this increase runoff, in accordance with Liverpool Council Standards. A discussion of the DRAINS modelling of the stormwater system, the associated OSD design and other controls is further described in section 5.1.
- Water quality- Urban developments have the potential to increase gross pollutants, sediments, hydrocarbons and nutrient concentrations in stormwater runoff. As a result, stormwater has to be treated to meet certain controls as per Liverpool Council's DCP, limiting the impact of contaminants on downstream stormwater systems. The details of the water quality treatment methodology and calculations is expanded upon in section 5.2 .

5.1 Stormwater quantity

As per the Liverpool City Council's DCP and engineering guidelines, on-site detention will be required for the site to ensure peak flow rates at any point within the downstream drainage system do not increase as a result of the development during a 5 -year, 10 year and 100-year ARI storm event.

An above-ground on-site detention basin has been proposed, the dimensions of which are shown below:

- Above Ground OSD- 50 sqm with maximum of 300 mm ponding (total $15 \mathrm{~m}^{3}$ of volume)

Refer to the table below for a summary of the pre and post developed flows for the subject site for the relevant storm events.

Storm Event	Pre-developed Flows	Post-developed Flows
5 year ARI	0.133	0.132
10 year ARI	0.153	0.150
100 year ARI	0.219	0.194

Table 5.1- Pre-developed and Post-developed flows (from subject site)
As demonstrated by the above table, and the attached DRAINS model, the post-developed flows have been reduced to below the calculated pre-developed values through the proposal of a 50 sqm above ground basin and dual orifice outlet system (360 mm diameter orifice for the
minor events, and $300 \times 100 \mathrm{~mm}$ orifice for the major events). Refer to the civil engineering plans for further details on the proposed OSD system.

In addition to the site stormwater, the design of the stormwater easement has also been considered within the DRAINS modelling. The existing 450 mm diameter stormwater pipe has been upsized to a 525 mm pipe to ensure no loss of capacity. The attached DRAINS model shows that in the 100 yr ARI storm event, the pipe has an increased capacity in the postdeveloped scenario from $0.214 \mathrm{~m}^{3} / \mathrm{s}$ (pre-developed) to $0.236 \mathrm{~m}^{3} / \mathrm{s}$ (post-developed). The management of the overland flows through the site is detailed within section 4 of this report.

5.2 Water Quality

Council's DCP requires that stormwater be treated before being discharged from the site, pollutants will need to be reduced by the following percentages according to Liverpool City Council:

- Total Nitrogen to be reduced by 45%
- Total Phosphorus to be reduced by 65%
- Total Suspended Solids to be reduced by 85%
- Gross Pollutants to be reduced by 90%

A music model has been undertaken in order to design the stormwater quality system. A combination of ocean guard pit baskets, a rainwater tank and a bio-retention basin have been proposed. Refer to the civil drawing included within Appendix A for more details. The results from the MUSIC model have been summarised in Table 5.2 and Figure 5.2 below.

Pollutant	Pre-Developed Pollutant loads (kg/year)	Post-Developed Pollutant loads (kg/year)	Target Reduction	Pollutant Reduction
Phosphorus	0.979	0.262	65%	73.2%
Nitrogen	6.14	3.25	45%	47.0%
Suspended Solids	499	40.2	85%	91.9%

Table 5.2 - Catchment Pollutant loads

Figure 5.2 - MUSIC Modelling Water Quality Screenshot

6. CONCLUSION

Catchment mapping, MUSIC modelling, DRAINS modelling and HEC-RAS flood modelling has been undertaken to assess the proposed Liverpool Health Care development and its management of the site stormwater (water quality and quantity) and the upstream catchment (overland flows and piped flow in a 100 yr ARI storm event). The proposed design consists of the relocation of the existing easement, such that it diverts upstream stormwater around the building footprint as well as the implementation of an above ground OSD basin, bio-retention system and rainwater tank.

As per Liverpool City Council's DCP water quality standards, measures including the bioretention system have been implemented such that stormwater pollutants such as Nitrogen, Phosphorus and Suspended Solids have been reduced by more than 45%, 65% and 85% respectively. Furthermore the proposed stormwater system has satisfied all council OSD requirements as shown in section 5.1. As a result, it is evident that the proposed design is in accordance with Liverpool Council standards as well as engineering best practice principles.

APPENDIX A - CIVIL ENGINEERING PLANS

7-SOdOUd QNINNシ7C YOU

